Learning to Link Entities with Knowledge Base
نویسندگان
چکیده
This paper address the problem of entity linking. Specifically, given an entity mentioned in unstructured texts, the task is to link this entity with an entry stored in the existing knowledge base. This is an important task for information extraction. It can serve as a convenient gateway to encyclopedic information, and can greatly improve the web users’ experience. Previous learning based solutions mainly focus on classification framework. However, it’s more suitable to consider it as a ranking problem. In this paper, we propose a learning to rank algorithm for entity linking. It effectively utilizes the relationship information among the candidates when ranking. The experiment results on the TAC 20091 dataset demonstrate the effectiveness of our proposed framework. The proposed method achieves 18.5% improvement in terms of accuracy over the classification models for those entities which have corresponding entries in the Knowledge Base. The overall performance of the system is also better than that of the state-of-the-art methods.
منابع مشابه
Literature Survey on Relation Extraction and Relational Learning
Semantic relation extraction between entities plays key role in many applications in natural language processing and understanding, information retrieval, text summarizing, etc. These application require an understanding of the semantic relations between entities. We present a comprehensive review of various aspects of the entity relation extraction task. We also present a review of relation ex...
متن کاملPresenting a method for extracting structured domain-dependent information from Farsi Web pages
Extracting structured information about entities from web texts is an important task in web mining, natural language processing, and information extraction. Information extraction is useful in many applications including search engines, question-answering systems, recommender systems, machine translation, etc. An information extraction system aims to identify the entities from the text and extr...
متن کاملSimple Yet Effective Method for Entity Linking in Microblog-Genre Text
Semantic analysis microblog data is a challenging, emerging research area. Unlike news text, microblogs pose several new challenges, due to their short, noisy, contextualized and real-time nature. In this paper, we investigate how to link entities in microblog posts with knowledge base and adopt a cascade linking approach. In particular, we first use a mention expansion model to identify all po...
متن کاملAn overview of embedding models of entities and relationships for knowledge base completion
Knowledge bases of real-world facts about entities and their relationships are useful resources for a variety of natural language processing tasks. However, because knowledge bases are typically incomplete, it is useful to be able to perform knowledge base completion or link prediction, i.e., predict whether a relationship not in the knowledge base is likely to be true. This article presents an...
متن کاملTopic-Based Embeddings for Learning from Large Knowledge Graphs
We present a scalable probabilistic framework for learning from multi-relational data, given in form of entity-relation-entity triplets, with a potentially massive number of entities and relations (e.g., in multirelational networks, knowledge bases, etc.). We define each triplet via a relation-specific bilinear function of the embeddings of entities associated with it (these embeddings correspo...
متن کامل